Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 112: 104082, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979607

RESUMO

OBJECTIVE: To investigate the effect of blue light photoactivated riboflavin modified universal adhesives on dentin collagen biodegradation resistance, dentin apparent elastic modulus, and resin-dentin bond strength with interfacial morphology. METHODS: Dentin slabs were treated with 0.1% riboflavin-5-phosphate modified (powder added slowly while shaking and then sonicated to enhance the dispersion process) Universal Adhesive Scotch Bond and Zipbond™ along with control (non-modified) and experimental adhesives, photoactivated with blue light for 20s. Hydroxyproline (HYP) release was assessed after 1-week storage. Elastic-modulus testing was evaluated using universal testing machine at 24 h. Resin-dentin interfacial morphology was assessed with scanning electron-microscope, after 6-month storage. 0.1% rhodamine dye was added into each adhesive and analyzed using CLSM. Detection of free amino groups was carried out using ninhydrin and considered directly proportional to optical absorbance. Collagen molecular confirmation was determined using spectropolarimeter to evaluate and assess CD spectra. For molecular docking studies with riboflavin (PDB ID file), the binding pocket was selected with larger SiteScore and DScore using Schrodinger PB software. After curing, Raman shifts in Amide regions were obtained at 8 µm levels. Data were analyzed using Two-way analysis of variance (ANOVA, p ≤ 0.05) and Tukey-Kramer multiple comparison post hoc tests. RESULTS: At baseline, bond strength reduced significantly (p ≤ 0.05) in control specimens. However, at 6 months' storage, UVA Zipbond™ had significantly higher µTBS. Resin was able to diffuse through the porous demineralized dentin creating adequate hybrid layers in both 0.1%RF modified adhesives in CLSM images. In riboflavin groups, hybrid layer and resin tags were more pronounced. The circular dichroism spectrum showed negative peaks for riboflavin adhesive specimens. Best fitted poses adopted by riboflavin compound are docked with MMP-2 and -9 proteases. Amide bands and CH2 peaks followed the trend of being lowest for control UA Scotch bond adhesive specimens and increasing in Amides, proline, and CH2 intensities in 0.1%RF modified adhesive specimens. All 0.1%RF application groups showed statistically significant (p < 0.05) less levels of HYP released compared to controls. Dentin Eappr of riboflavin application was significantly (p < 0.05) more as compared to control groups. CONCLUSION: Blue light photoactivated 0.1% riboflavin modified adhesives improved the biochemical and biomechanical properties of demineralized dentin as well as the long-term resin-dentin interfacial integrity and bond strength of universal adhesive to dentin.


Assuntos
Colagem Dentária , Adesivos Dentinários , Adesivos , Resinas Compostas , Dentina , Teste de Materiais , Simulação de Acoplamento Molecular , Cimentos de Resina , Riboflavina , Resistência à Tração
2.
Dent Mater ; 36(3): 456-467, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32008748

RESUMO

OBJECTIVE: The aim is to investigate the potential significance of combining minimally invasive high-intensity focused ultrasound (HIFU) with hydroxyapatite (HA) nanorods treatment for the remineralization of demineralized coronal dentine-matrix. METHODS: HA having nanorods structure were synthetized using ultrasonication with precipitation method. HA nanorods were characterized by TEM for average-size/shape. Following phosphoric acid demineralization, dentine specimens were treated with HA-nanorods with/without subsequent HIFU exposure for 5 s, 10 s and 20 s then stored in artificial saliva for 1-month. Dentine specimens were characterized using different SEM and Raman spectroscopic techniques. In addition, the biochemical stability and HA-nanorods were examined using ATR-FTIR to observe attachment of nanoparticles. Also, surface nanoindentation properties were evaluated using AFM in tapping-mode. RESULTS: HA-nanorods displayed well-defined, homogenous plate-like nanostructure. TEM revealed intact collagen-fibrils network structure with high density due to obliteration of interfibrillar spaces with clear evidence of remineralization in combined HA/HIFU treatment. With HA-nanorods treatment collagen-network structure was visible, consisting of fibrils interlaced into a compact pattern with evidence of minerals deposition. AFM investigation revealed clear mineral formation with the increase of HIFU exposure time. Bands associated with inorganic phase dominate well in HIFU exposed specimens with PO stretching within dentine mineral identified at 960 cm-1. Characteristic dentine structure for control and HIFU 20 s specimens is reflected as oscillatory mean Amide-I intensity with measurement giving a precise sinusoidal response of polarization angle ß within dentinal tissue. Nanoindentation testing showed a gradual significant increase in elastic-modulus with the increase in HIFU exposure time after 1-month storage. FTIR spectrum of the HIFU exposed dentine displayed bands at 1650 cm-1, 1580 cm-1 and 1510 cm-1 that can be attributed to Amide-I, II and III. SIGNIFICANCE: The synergetic effect of HIFU exposure on remineralization potential of demineralized dentine-matrix following nano-hydroxyapatite treatment was revealed. This synergetic effect is dependent on HIFU exposure time.


Assuntos
Durapatita , Nanotubos , Dentina , Saliva Artificial , Remineralização Dentária
3.
Dent Mater ; 36(1): 145-156, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31818524

RESUMO

OBJECTIVE: To modify a universal dentine adhesive with different concentrations of riboflavin and D-Alpha 1000 Succinate polyethylene (VE-TPGS) as a chemical enhancer and to assess the micro-tensile bond strength (24h/12 months), determine resin penetration, measurement of intermolecular interactions and cytotoxicity. MATERIALS AND METHODS: An experimental adhesive system based on bis-GMA, HEMA and hydrophobic monomer was doped with RF0.125 (RF - Riboflavin) or RF/VE-TPGS (0.25/0.50) and submitted to µTBS evaluation. Resin dentine slabs were prepared and examined using SEM and TEM. Adhesion force was analysed on ends of AFM cantilevers deflection. Quenched peptide assays were performed using fluorescence scanner and wavelengths set to 320nm and 405nm. Cytotoxicity was assessed using human peripheral blood mononuclear cell line. Molecular docking studies were carried out using Schrödinger small-molecule drug discovery suite 2018-2. Data from viable cell results was analyzed using one-way ANOVA. Bond strength values were analysed by two-way ANOVA. Nonparametric results were analyzed using a Kruskal-Wallis test at a 0.05 significance level. RESULTS: RF/VE-TPGS0.25 groups showed highest bond strength results after 24-h storage in artificial saliva (p<0.05). RF/VE-TPGS0.50 groups showed increased bond strength after 12-months of ageing. RF/VE-TPGS modified adhesives showed appreciable presence of a hybrid layer. Packing fraction indicated solid angle profiles describing well sized density and topology relations for the RF/VE-TPGS adhesives, in particular with the RF/VE-TPGS0.50 specimens. Qualitative analysis of the phenotype of macrophages was prominently CD163+ in the RF/VE-TPGS0.50. Both the compounds showed favourable negative binding energies as expressed in terms of 'XP GScore'. CONCLUSION: New formulations based on the incorporation of RF/VE-TPGS in universal adhesives may be of significant potential in facilitating penetration, distribution and uptake of riboflavin within the dentine surface.


Assuntos
Colagem Dentária , Adesivos Dentinários , Cimentos Dentários , Dentina , Humanos , Leucócitos Mononucleares , Teste de Materiais , Simulação de Acoplamento Molecular , Cimentos de Resina , Riboflavina , Propriedades de Superfície , Resistência à Tração , Vitamina E
4.
Dent Mater ; 35(9): 1264-1278, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31201019

RESUMO

OBJECTIVE: To analyze effect of NaOCl+2% quaternary ammonium silane (QAS)-containing novel irrigant against bacteria impregnated inside the root canal system, and to evaluate its antimicrobial and mechanical potential of dentine substrate. METHODS: Root canal was prepared using stainless steel K-files™ and ProTaper™ and subjected to manual and ultrasonic irrigation using 6% NaOCl+2% CHX, 6% NaOCl+2% QAS and saline as control. For confocal-microscopy, Raman spectroscopy and SEM analysis before and after treatment, Enterococcus faecalis cultured for 7 days. Raman spectroscopy analysis was done across cut section of gutta percha/sealer-dentine to detect resin infiltration. Indentation of mechanical properties was evaluated using a Berkovich indenter. The contact angle of irrigants and surface free energy were evaluated. Mineralization nodules were detected through Alazarin red after 14 days. RESULTS: Control biofilms showed dense green colonies. Majority of E. faecalis bacteria were present in biofilm fluoresced red in NaOCl+2% QAS group. There was reduction of 484cm-1 Raman band and its intensity reached lowest with NaOCl+2% QAS. There was an increase in 1350-1420cm-1 intensity in the NaOCl+2% CHX groups. Gradual decrease in 1639cm-1 and 1609cm-1 Raman signal ratios were seen in the resin-depth region of 17µm>, 14.1µm> and 13.2µm for NaOCl+2% QAS, NaOCl+2% CHX and control groups respectively. All obturated groups showed an intact sealer/dentine interface with a few notable differences. 0.771 and 83.5% creep indentation distance for NaOCl+2% QAS ultrasonic groups were observed. Highest proportion of polar component was significantly found in the NaOCl+2% QAS groups which was significantly higher as compared to other groups. Mineralized nodules were increased in NaOCl+2% QAS. SIGNIFICANCE: Favorable antimicrobial and endodontic profile of the NaOCl+2% QAS solution might suggest clinical use for it for more predictable reduction of intracanal bacteria.


Assuntos
Compostos de Amônio , Irrigantes do Canal Radicular , Biofilmes , Cavidade Pulpar , Dentina , Enterococcus faecalis , Silanos
5.
Dent Mater ; 35(7): 1017-1030, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064669

RESUMO

OBJECTIVE: The aim of this study was to investigate EDC-assisted collagen crosslinking effect with different concentrations of tiopronin-protected gold (TPAu) nanoparticles on demineralized dentine. METHODS: TPAu nanoparticles were fabricated from 0.31-g tetrachloroauric acid and 0.38-g of N-(2-mercaptopropionyl) glycine (2.4-mmol). Then co-dissolved using 35-mL of 6:1 methanol/acetic acid and mixed using NaBH4. EDC (0.3-M) was conjugated to TPAu nanoparticles at TPAU/EDC-0.25:1, and TPAU/EDC-0.5:1 treatment formulations ratios. Dentin specimens treated with 0.3-M EDC solution alone or left untreated were used as control. Nanoparticles formulations were characterized in term of particles morphology and size, Zeta potential, thermogravimetric analysis and small-angle X-ray scattering. Dentin substrates were characterized in term of TEM investigation, dentin proteases characterization, hydroxyproline liberation, elastic modulus measurement, Raman analysis and confocal microscopy viewing. RESULTS: TEM evaluation of tiopronin protected gold nanoparticles dispersion revealed nano-clusters formations in both groups. However, based on our TEM measurements, the particle-size was ranging from ˜20 to 50 nm with spherical core-shape which were almost similar for both TPAu/EDC ratios (0.5:1 and 0.25:1). Zeta potential measurements indicate negative nanoparticles surface charge. SAXS profiles for both formulations, suggest a typical profile for uni-lamellar nanoparticles. Superior dentin collagen cross-linking effect was found with the TPAu/EDC nanoparticles formulations compared to the control and EDC treated groups. SIGNIFICANCE: Cross-linking of dentin collagen using TPAu coupled with EDC through TPAu/EDC nanoparticles formulations is of potential significance in improving the biodegradation resistance, proteases inhibition, mechanical and structural stability of demineralized dentin substrates. In addition, the cross-linking effect is dependent on TPAu/EDC ratio, whereas higher cross-linking effect was found at TPAu/EDC ratio of 0.5:1.


Assuntos
Nanopartículas Metálicas , Tiopronina , Colágeno , Reagentes de Ligações Cruzadas , Dentina , Ouro , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Dent Mater ; 35(7): 979-989, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31003759

RESUMO

OBJECTIVE: This study introduced the potential and proof-of-concept of high intensity focused ultrasound (HIFU) technology for dentin-surface treatment for resin-dentin bonding without acid-aided demineralization. This new strategy could provide a way to enhance interface-integrity and bond-durability by changing the nature of dentin-substrate; bonded-interface structure and properties; and minimizing denuded-collagen exposure. METHODS: The interaction between HIFU waves and dentin-surface in terms of structural, mechanical and chemical variations were investigated by SEM, TEM, AFM, nano-indentation and Raman-analysis. The bonding between HIFU-treated dentin and two-step, etch-and-rinse, adhesive was preliminary explored by characterizing dentin-bound proteases activities, resin-dentin interfacial morphology and bond-durability with HIFU exposure at different time-points of 60, 90 and 120 s compared to conventional acid-etching technique. RESULTS: With the increase in HIFU exposure-time from 60-to-120 s, HIFU waves were able to remove the smear-layer, expose dentinal-tubules and creating textured/rough dentin surface. In addition, dentin surfaces showed a pattern of interlocking ribbon-like minerals-coated collagen-fibrils protruding from the underlaying amorphous dentin-background with HIFU exposure for 90 s and 120 s. This characteristic pattern of dentin-surface showing inorganic-minerals associated/aligned with collagen-fibrils, with 90-to-120 s HIFU-treatment, was confirmed by the Raman-analysis. HIFU-treated specimens showed higher nano-indentation properties and lower concentrations of active MMP-2 and Cathepsin-K compared to the acid-etched specimens. The resin-dentin bonded interface revealed the partial/complete absence of the characteristic hybrid-layer formed with conventional etch-and-rinse bonding strategy. Additionally, resin-infiltration and resin-tags formation were enhanced with the increase in HIFU exposure-time to 120 s. Although, all groups showed significant decrease in bond-strength after 12 months compared to 24 h storage in artificial saliva, groups exposed to HIFU for 90 s and 120 s showed significantly higher µTBS compared to the control acid-etched group. SIGNIFICANCE: The implementation of HIFU-technology for dental hard-tissues treatment could be of potential significance in adhesive/restorative dentistry owing to its ability of controlled, selective and localised combined tissue alteration/ablation effects.


Assuntos
Colagem Dentária , Adesivos Dentinários , Condicionamento Ácido do Dente , Dentina , Teste de Materiais , Microscopia Eletrônica de Varredura , Cimentos de Resina , Propriedades de Superfície , Resistência à Tração
7.
Arch Oral Biol ; 98: 195-203, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30502562

RESUMO

OBJECTIVE: To investigate effects of HIFU on macrophage phenotype, surface micro-topography and nano-scale surface mechanical properties of dental cementum. MATERIALS AND METHODS: Root discs (2 mm thickness) were cut apical to CEJ and sectioned into quadrants. HIFU setup with bowl-shaped piezo ceramic transducer submerged in a water tank was used for exposure on each specimen for 15 s, 30 s or 60 s. The specimens of the control group were left without any HIFU exposure. HIFU was generated with a continuous sinusoidal wave of 120Vpp amplitude, 250 KHZ resonance-frequency and highest ultrasonic pressure of ∼10 bar at the focus. Specimens for SEM were viewed, and micro-topography characterization performed, using AFM and Ra parameter and surface area (SA) calculated by specialized SPM surface analysis software. For nano-indentation testing, experiments were carried out using AFM. Macrophage cell isolation and culturing was performed on cementum to receive the HIFU treatment at different time periods. Raman spectroscopy were scanned to create spectra perpendicular to the cementum substrate to analyze generation of standard spectra for Raman intensity ratio of hydroxyapatite normalized to the peaks ν1 960 cm-1. Data was expressed as means ± standard deviations and analyzed by one-way ANOVA in term of Ra, SA, H and Er. Different points for fluorescence intensity ratio were analyzed by Raman using Wilcoxon rank sum test. RESULTS: HIFU exposure at 60 s removed the smear layer and most of cementum appeared smoothened. AFM characterisation, showed a slight decrease in the irregularity of the surface as exposure time increased. Intact macrophages can be identified in control and all experimental HIFU groups. The level of fluorescence for the control and HIFU 15 and 30 s were low as compared to HIFU 60 s. CONCLUSION: If HIFU can be successfully implemented, it may be a possible alternative to current methods used in periodontal therapy to achieve smooth root surfaces.


Assuntos
Cemento Dentário/metabolismo , Cemento Dentário/efeitos da radiação , Tratamento por Ondas de Choque Extracorpóreas/métodos , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Análise de Variância , Cemento Dentário/ultraestrutura , Relação Dose-Resposta à Radiação , Durapatita , Fluorescência , Doenças Periodontais/radioterapia , Doses de Radiação , Análise Espectral Raman , Propriedades de Superfície/efeitos da radiação , Fatores de Tempo , Raiz Dentária/efeitos da radiação , Raiz Dentária/ultraestrutura , Transdutores
8.
Dent Mater ; 35(2): 356-367, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30528297

RESUMO

OBJECTIVE: Effect of d-alpha-tocopheryl poly(ethyleneglycol)-1000-succinate (VE-TPGS) with riboflavin-5'-phosphate solution on crosslinking of dentine collagen was investigated to analyze collagen's structural integrity. METHODS: VE-TPGS was added to RF-solution, at RF/VE-TPGS (w/w) ratios of 0.125/0.250 and 0.125/0.500. Demineralized dentine beams were used (10wt.% phosphoric acid), rinsed using deionized-water and analysed using ELISA (Human MMP2 ELISA; Human CTSK/Cathepsin-K for MMP2 and Cathepsin K analysis). AFM of dentine collagen-fibrils structure was done before and after dentine specimens' placement in mineralization solution and tested after 14days in artificial saliva/collagenase (AS/Co) solution. The specimens were tested after 24h in mineralization solution for surface/bulk elastic modulus. Nano-indentation was carried out for each specimen on intertubular-dentine with lateral spacing of 400nm. Reduced elastic-modulus and nano-hardness were calculated and collagen content was determined using hydroxyproline-assay. Micro-Raman were performed. TEM was carried out to study structural variations of dentine-collagen in artificial-saliva (collagenase). Data were presented as mean±standard deviation and analyzed by SPSS v.15, by analysis of variance. RESULTS: Synergetic effect of VE-TPGS was observed with RF through higher structural integrity of dentine collagen-fibrils shown by TEM/AFM. Superior surface/bulk mechanical stability was shown by nano-indentation/mechanical testing. Improvement in collagenase degradation resistance for hydroxyproline release was observed and lower endogenous-protease release of MMP-2/Cathepsin-K. Raman-analysis analysed chemical interactions between RF and collagen confirming structural-integrity of collagen fibrils after crosslinking. After 24h mineralization, AFM showed mineral depositions in close association with dentine-collagen fibrils with RF/VE-TPGS formulations. SIGNIFICANCE: Potential synergetic effect of RF/VE-TPGS was observed by reflection of higher structural integrity and conformational-stability of dentine-collagen fibrils.


Assuntos
Dentina , Riboflavina , Colágeno , Humanos , Vitamina E
9.
Dent Mater ; 34(8): 1175-1187, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29779627

RESUMO

OBJECTIVE: Collagen fibrils aid in anchoring resin composite restorations to the dentine substrate. The aim of the study was to investigate effect of non-enzymatic glycation on bond strength and durability of demineralized dentine specimens in a modified two-step etch-and-rinse dentine adhesive. METHODS: Dentine surfaces were etched with 37% phosphoric acid, bonded with respective in vitro ethanol and acetone adhesives modified with (m/m, 0, 1%, 2% and 3% ribose), restored with restorative composite-resin, and sectioned into resin-dentine slabs and beams to be stored for 24h or 12 months in artificial saliva. Bond-strength testing was performed with bond failure analysis. Pentosidine assay was performed on demineralized ribose modified dentine specimens with HPLC sensitive fluorescent detection. The structural variations of ribose-modified dentine were analysed using TEM and human dental pulpal cells were used for cell viability. Three-point bending test of ribose-modified dentine beams were performed and depth of penetration of adhesives evaluated with micro-Raman spectroscopy. The MMP-2 and cathepsin K activities in ribose-treated dentine powder were also quantified using ELISA. Bond strength data was expressed using two-way ANOVA followed by Tukey's test. Paired T tests were used to analyse the specimens for pentosidine crosslinks. The modulus of elasticity and dentinal MMP-2 and cathepsin K concentrations was separately analyzed using one-way ANOVA. RESULTS: The incorporation of RB in the experimental two-step etch-and-rinse adhesive at 1% improved the adhesive bond strength without adversely affecting the degree of polymerisation. The newly developed adhesive increases the resistance of dentine collagen to degradation by inhibiting endogenous matrix metalloproteinases and cysteine cathepsins. The application of RB to acid-etched dentine helps maintain the mechanical properties. SIGNIFICANCE: The incorporation of 1%RB can be considered as a potential candidate stabilizing resin dentine bond.


Assuntos
Adesivos Dentinários/química , Ribose/química , Condicionamento Ácido do Dente , Catepsina K/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Polpa Dentária/citologia , Análise do Estresse Dentário , Ensaio de Imunoadsorção Enzimática , Humanos , Técnicas In Vitro , Teste de Materiais , Metaloproteinase 2 da Matriz/metabolismo , Microscopia Eletrônica , Saliva Artificial , Análise Espectral Raman , Propriedades de Superfície
10.
J Dent Res ; 96(7): 780-789, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28182862

RESUMO

Previous studies reported that grapeseed extract (GSE), which is rich in proanthocyanidins (PAs), improves the biodegradation resistance of demineralized dentin. This study aimed to investigate the effect of a new GSE delivery strategy to demineralized dentin through loading into biodegradable polymer poly-[lactic-co-glycolic acid] (PLGA) nanoparticles on the biodegradation resistance in terms of structural stability and surface/bulk mechanical and biochemical properties with storage time in collagenase-containing solutions. GSE-loaded nanoparticles were synthetized by nanoprecipitation at PLGA/GSE (w/w) ratios of 100:75, 100:50, and 100:25 and characterized for their morphological/structural features, physicochemical characteristics, and drug loading, entrapment, and release. Nanoparticle suspensions in distilled water (12.5% w/v) were applied (1 min) to demineralized dentin specimens by simulating pulpal pressure. The nanoparticle delivery was investigated by scanning electron microscopy (SEM)/transmission electron microscopy (TEM), and the GSE release from the delivered nanoparticles was further characterized. The variations in surface and bulk mechanical properties were characterized in terms of reduced elastic-modulus, hardness, nanoindentation testing, and apparent elastic-modulus with a storage time up to 3 mo. Hydroxyproline release with exposure to collagenase up to 7 d was estimated. An etch-and-rinse dentin adhesive was applied to investigate the morphology of the resin-dentin interface after nanoparticle delivery. Treatment with the GSE-loaded nanoparticles enhanced the collagen fibril structural resistance, reflected from the TEM investigation, and improved the biomechanical and biochemical stability of demineralized dentin. Nanoparticles having PLGA/GSE of 100:75 (w/w) showed the highest cumulative GSE release and were associated with the best improvement in biodegradation resistance. TEM/SEM showed the ability of the nanoparticles to infiltrate dentinal tubules' main and lateral branches. SEM revealed the formation of a uniform hybrid layer and well-formed resin tags with the presence of numerous nanoparticles located within the dentinal tubules and/or attached to the resin tag. This study demonstrated the potential significance of delivering collagen crosslinkers loaded into biodegradable polymer nanoparticles through the dentinal tubules of demineralized dentin on the biodegradation resistance.


Assuntos
Dentina/efeitos dos fármacos , Extrato de Sementes de Uva/química , Nanopartículas/química , Proantocianidinas/química , Adulto , Colagenases/farmacologia , Resinas Compostas/química , Adesivos Dentinários/química , Humanos , Hidroxiprolina/análise , Técnicas In Vitro , Ácido Láctico , Teste de Materiais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Dente Molar , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície , Desmineralização do Dente
11.
J Dent Res ; 95(9): 1065-72, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27422859

RESUMO

In this study, we are introducing a new drug-delivery approach to demineralized dentin substrates through microsized dentinal tubules in the form of drug-loaded nanocapsules. Chlorhexidine (CHX) is widely used in adhesive dentistry due to its nonspecific matrix metalloproteinase inhibitory effect and antibacterial activities. Poly(ε-caprolactone) nanocapsules (nano-PCL) loaded with CHX were fabricated by interfacial polymer deposition at PCL/CHX ratios of 125:10, 125:25, and 125:50. Unloaded nanocapsules (blank) were fabricated as control. The fabricated nanocapsules were characterized in vitro in terms of particle size, surface charges, particle recovery, encapsulation efficiency, and drug loading. Nanocapsule morphology, drug inclusion, structural properties, and crystallinity were investigated by scanning and transmission electron microscopes (SEM/TEM), energy-dispersive x-ray analysis, Fourier transform infrared spectroscopy, and x-ray diffraction. Initial screening of the antibacterial activities and the cytotoxicity of the nanocapsules were also conducted. Nanocapsules, as carried on ethanol/water solution, were delivered to demineralized dentin specimens connected to an ex vivo model setup simulating the pulpal pressure to study their infiltration, penetration depth, and retention inside the dentinal tubules by SEM/TEM. Nanocapsules were Ag labeled and delivered to demineralized dentin, followed by the application of a 2-step etch-and-rinse dentin adhesive. CHX-release profiles were characterized in vitro and ex vivo up to 25 d. Spherical nanocapsules were fabricated with a CHX core coated with a thin PCL shell. The blank nanocapsules exhibited the largest z-average diameter with negatively charged ζ-potential. With CHX incorporation, the nanocapsule size was decreased with a positive shift in ζ-potential. Nano-PCL/CHX at 125:50 showed the highest drug loading, antibacterial effect, and CHX release both in vitro and ex vivo. SEM and TEM revealed the deep penetration and retention of the CHX-loaded nanocapsules inside dentinal tubules and their ability to be gradually degraded to release CHX in vitro and ex vivo. Ag-labeled nanocapsules revealed the close association and even distribution of nanocapsules throughout the resin tag structure. This study demonstrated the potential of introducing this novel drug-delivery approach to demineralized dentin substrates and the resin-dentin interface with nanosized CHX-loaded nanocapsules through the microsized dentinal tubules.


Assuntos
Anti-Infecciosos Locais/administração & dosagem , Clorexidina/administração & dosagem , Resinas Compostas/metabolismo , Adesivos Dentinários/uso terapêutico , Dentina/metabolismo , Nanocápsulas/administração & dosagem , Anti-Infecciosos Locais/uso terapêutico , Clorexidina/uso terapêutico , Dentina/efeitos dos fármacos , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Oper Dent ; 41(4): 417-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26666390

RESUMO

This study evaluated the effect of different chairside polishing systems on the surface roughness and topography of monolithic zirconia. Thirty-five monolithic zirconia specimens (Lava PLUS, 3M ESPE) were fabricated and divided into five groups of seven and polished with the following: Group 1 (WZ)-Dura white stone followed by Shofu zirconia polishing kit; Group 2 (SZ)-Shofu zirconia polishing kit; Group 3 (CE)-Ceramiste porcelain polishers; Group 4 (CM)-Ceramaster porcelain polishers; and Group 5 (KZ)-Komet ZR zirconia polishers. All specimens were ground with a fine-grit diamond bur prior to polishing procedures to simulate clinical finishing. Baseline and post-polishing profilometric readings were recorded and delta Ra values (difference in mean surface roughness before and after polishing) were computed and analyzed using one-way analysis of variance and Scheffe post hoc test (p<0.05). Representative scanning electron microscopy (SEM) images of the ground but unpolished and polished specimens were acquired. Delta Ra values ranged from 0.146 for CE to 0.400 for KZ. Delta Ra values for KZ, WZ, and SZ were significantly greater than for CE. Significant differences in delta Ra values were also observed between KZ and CM. The SEM images obtained were consistent with the profilometric findings. Diamond-impregnated polishing systems were more effective than silica carbide-impregnated ones in reducing the surface roughness of ground monolithic zirconia.


Assuntos
Polimento Dentário , Zircônio , Diamante , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície
13.
Int Endod J ; 47(4): 346-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24033427

RESUMO

AIM: The aim of this study was to differentiate human embryonic stem cells (hESCs) into odontoblastic lineage in an optimized culture milieu. METHODOLOGY: In Phase 1, hESCs were differentiated into mesenchymal stem cells (H9-MSCs). In Phase 2, H9-MSCs were then differentiated into odontoblast-like cells (H9-Odont) under the stimulation of FGF-8 and BMP-4. Alternatively, H9-MSCs were differentiated into osteogenic lineage (H9-Osteo). In Phase 3, H9-Odont were seeded on 17% EDTA-treated dentine substrates in the presence of FGF-8 and BMP-4 for further differentiation. All experiments were performed in triplicate (n = 3). One-way anova was used to test hESC differentiation into different cell types. Post hoc Tukey's test was used to compare between groups. P < 0.05 was considered statistically significant. RESULTS: H9-Odont expressed the odontoblastic marker DSPP gene 125.47 ± 0.1 (SD)-folds higher compared with H9-MSCs at mRNA level (real-time RT-PCR). Additionally, the flow cytometry results revealed 53.1 ± 3.4 (SD) % of DSP (+) cells in H9-Odont. Alternatively, H9-Osteo expressed 5.9 ± 2.2 (SD) % of DSP (+) cells. Moreover, the SEM results demonstrated that H9-Odont were found to undergo morphological changes from a fibroblast-like shape into more rounded shapes with cytoplasmic extensions into the dentinal tubules when seeded on 17% EDTA-treated dentine substrate in the presence of FGF-8 and BMP-4. However, H9-Osteo and H9-MSCs did not show similar morphological changes under similar culture milieu. CONCLUSION: This study supports the potential of hESCs as a stable, consistent, unlimited and 'off-the-shelf' cell source to obtain odontoblastic cells for future clinical and research applications.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Humanas/citologia , Odontoblastos/citologia , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fator 8 de Crescimento de Fibroblasto/farmacologia , Citometria de Fluxo , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Int Endod J ; 46(2): 169-78, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22900674

RESUMO

AIM: To investigate the effect of proanthocyanidins (PAs)-rich grape seed extract on the biodegradation resistance of demineralized root dentine and on the bond strength and durability between resin-based sealer and root dentine. METHODOLOGY: Single-rooted premolars (n = 28) were divided into PAs-treated and nontreated specimens. Root canals were instrumented to apical size 40, filled with RealSeal SE sealer/Core, sectioned into slices of 1 mm thickness from middle and coronal thirds and stored for 1 week or 3 months in distilled water. Specimens were subjected to push-out strength testing with the load applied perpendicularly in an apical to coronal direction using a universal testing machine. Remaining apical thirds were viewed by scanning electron microscopy after 3-months storage. Additional root canals were filled with rhodamine-B-labelled sealer and viewed by confocal laser scanning microscopy. Unfilled roots (n = 6) were sliced, demineralized, PAs-treated or left untreated and exposed to 24 h collagenase to determine hydroxyproline release in the supernatant. Two-way anova was used to test the effect of both dentine treatment with PAs and anatomical locations on bond strength and hydroxyproline release. Tukey-Kramer multiple comparison post hoc test was used to compare between groups. RESULTS: No difference in bond strength was found after 1-week storage between both PAs-treated (crosslinked) and untreated (noncrosslinked) groups in the coronal thirds. However, treatment with PAs revealed higher 1-week bond strength values (P ≤ 0.05) in the middle thirds. Generally, 3-month storage decreased the bond strength compared to 1-week within each of the crosslinked and noncrosslinked groups. However, the decrease in the bond strength after 3 months was less for the crosslinked specimens compared to the noncrosslinked specimens. Confocal images revealed a relatively uniform fluorescent interfacial layer and tubular penetration after 1 week in both groups. SEM images revealed more intact resin sealer/dentine interfaces with PAs crosslinking after 3 months. In addition, hydroxyproline release was significantly less (P ≤ 0.05) with crosslinked specimens. CONCLUSION: Treating root dentine with PAs-rich grape seed extracts improved the biodegradation resistance of demineralized root dentine and enhanced the bond strength and durability between resin-based sealer and root dentine after short-term water storage.


Assuntos
Colagem Dentária , Dentina , Proantocianidinas , Cimentos de Resina , Raiz Dentária , Biotransformação , Colagenases , Reagentes de Ligações Cruzadas , Dentina/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Humanos , Hidroxiprolina/química , Teste de Materiais , Microscopia Confocal , Microscopia Eletrônica de Varredura , Proantocianidinas/farmacologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...